티스토리 뷰
Deep Learning 을 이용한 Object Detection의 최신 논문 동향의 흐름을 살펴보면서
Object Detection 분야에 대해서 살펴보고,
구조가 어떤 방식으로 되어있으며 어떤 방식으로 발전되어 왔는지 살펴보고자 합니다.
Object Detection이란?
Deep Learning을 이용하는 Computer Vision Task 중에서 세 번째 그림에 해당이 됩니다.
Object Detection이란
여러 물체에 대해 어떤 물체인지 분류하는 Classification 문제와
그 물체가 어디 있는지 박스를 통해 (Bounding box) 위치 정보를 나타내는 Localization 문제를
둘 다 해내야 하는 분야를 뜻합니다.
쉽게 말해서
Object Detection = 여러가지 물체에 대한 Classification
+ 물체의 위치정보를 파악하는 Localization
이라고 할 수 있습니다.
Object Detection = Multi-Labeled Classification
+ Bounding Box Regression(Localization)
Object Detection은 자율주행자동차, CCTV Surveillance, 스포츠경기, 무인 점포 등등.. 많은 곳에 쓰입니다.
Classification과 Object Detection, Tracking 을 비교한 Survey 논문이 있어
처음 접해보는 사람은 읽어보면 좋을 것 같아 링크를 걸어 두겠습니다 ㅎㅎ
https://pdfs.semanticscholar.org/25a6/c5dff9a7019475daa81cd5a7f1f2dcdb5cf1.pdf
또 2014년 이후 Object Detection 관련 논문들을 잘 정리해 놓은 GIthub가 있어 이 역시 링크를 걸어두겠습니다!
https://github.com/hoya012/deep_learning_object_detection
Deep Learning을 이용한 Object Detection 분야를 관련 최신 논문들의 흐름을 통해 알아보도록 합시다!
1-Stage Detector VS 2-stage Detector
Deep Learning을 이용한 Object Detection은 크게 1-stage Detector와 2-stage Detector로 나눌 수 있습니다.
가운데 수평 화살표를 기준으로 위 쪽 논문들이 2-stage Detector 논문들이고,
아래 쪽 논문들이 1-stage Detector 논문들입니다.
분홍색 네모로 표시한 논문들을 중심으로 논문리뷰를 진행하면서 Object Detection의 논문 흐름을 알아볼 예정입니다.
Object Detection문제는 앞에 말했듯이 물체의 위치를 찾는 Localization 문제와, 물체를 식별하는 Classification 문제를 합한 문제인데,
1-stage Detector는 이 두 문제를 동시에 행하는 방법이고
2-stage Detector는 이 두 문제를 순차적으로 행하는 방법입니다.
따라서 1-stage Detector가 비교적으로 빠르지만 정확도가 낮고
2-stage Detector가 비교적으로 느리지만 정확도가 높습니다.
2-stage Detector은 CNN을 처음으로 적용시킨 R-CNN부터
어쩌구 R-CNN (Fast R-CNN, Faster R-CNN ... )등의 R-CNN계열이 대표적입니다.
1-stage Detector에는 YOLO(You Look Only Once)계열과 SSD 계열 등이 포함이 됩니다.
아래는 Computer Vision분야 Major 학회들에서 소개되었던 Object Detection 논문들의 흐름입니다. (2019년 기준)
앞으로는 게시물에서는 Object Detection의 두 부류(?)의 대표주자 논문들과,
이를 뒤따라 성능을 향상시킨 논문들을 소개하면서
Object Detection분야에 조금 더 가까워 지는 시간을 갖도록 하겠습니다 :)
https://nuggy875.tistory.com/21
https://pdfs.semanticscholar.org/25a6/c5dff9a7019475daa81cd5a7f1f2dcdb5cf1.pdf
'CV & ML > Object Detection' 카테고리의 다른 글
[3D Object Detection] 3D Object Detection 논문 흐름 및 리뷰 (1) | 2022.01.04 |
---|---|
[Object Detection] CenterNet (Objects as Points) 논문 리뷰 (0) | 2019.08.17 |
[Object Detection] 3. Fast R-CNN & Faster R-CNN 논문 리뷰 (27) | 2019.08.17 |
[Object Detection] 2. R-CNN : 딥러닝을 이용한 첫 2-stage Detector (18) | 2019.04.03 |
YOLO v3 튜토리얼을 간단히 실행시켜보자 (2) | 2018.11.01 |
- Total
- Today
- Yesterday
- Computer Vision
- GPU
- Machine Learning
- MySQL
- SSH
- Object Detection
- Python
- nvidia
- GaussianSplatting
- 우분투
- MacOS
- CUDA
- Docker
- pytorch
- java
- Anaconda
- nginx
- git
- ubuntu
- Macbook
- nerf
- numpy
- Novel View Synthesis
- 3Dvision
- Deep Learning
- vscode
- Neural Radiance Field
- error
- 2-stage Detector
- Android
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |